首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   20篇
  国内免费   7篇
测绘学   12篇
大气科学   54篇
地球物理   146篇
地质学   123篇
海洋学   42篇
天文学   96篇
综合类   4篇
自然地理   38篇
  2023年   4篇
  2021年   10篇
  2020年   10篇
  2019年   12篇
  2018年   12篇
  2017年   9篇
  2016年   23篇
  2015年   3篇
  2014年   24篇
  2013年   16篇
  2012年   15篇
  2011年   25篇
  2010年   17篇
  2009年   23篇
  2008年   34篇
  2007年   28篇
  2006年   34篇
  2005年   25篇
  2004年   23篇
  2003年   18篇
  2002年   15篇
  2001年   5篇
  2000年   12篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1995年   9篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   10篇
  1988年   8篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1984年   7篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1974年   1篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有515条查询结果,搜索用时 883 毫秒
61.
62.
We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009 (Sánchez-Lavega, A. et al. [2010]. Astrophys. J. 715, L155-L159). The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 μm. The impact cloud expanded zonally from ∼5000 km (July 19) to 225,000 km (29 October, about 180° in longitude), remaining meridionally localized within a latitude band from 53.5°S to 61.5°S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact’s energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5°S latitude increases its eastward velocity with altitude above the tropopause by 5-10 m s−1. The corresponding vertical wind shear is low, about 1 m s−1 per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 m s−1. Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased exponentially with a characteristic timescale of 15 days; we can explain this behavior with a radiative transfer model of the cloud optical depth coupled to an advection model of the cloud dispersion by the wind shears. The expected sedimentation time in the stratosphere (altitude levels 5-100 mbar) for the small aerosol particles forming the cloud is 45-200 days, thus aerosols were removed vertically over the long term following their zonal dispersion. No evidence of the cloud was detected 10 months after the impact.  相似文献   
63.
Abstract– We investigated three‐dimensional structures of comet Wild 2 coma particle impact tracks using synchrotron radiation (SR) X‐ray microtomography at SPring‐8 to elucidate the nature of comet Wild 2 coma dust particles captured in aerogel by understanding the capture process. All tracks have a similar entrance morphology, indicating a common track formation process near the entrance by impact shock propagation irrespective of impactor materials. Distributions of elements along the tracks were simultaneously measured using SR‐XRF. Iron is distributed throughout the tracks, but it tends to concentrate in the terminal grains and at the bottoms of bulbs. Based on these results, we propose an impact track formation process. We estimate the densities of cometary dust particles based on the hypothesis that the kinetic energy of impacting dust particles is proportional to the track volume. The density of 148 cometary dust particles we investigated ranges from 0.80 to 5.96 g cm?3 with an average of 1.01 (±0.25) g cm?3. Moreover, we suggest that less fragile crystalline particles account for approximately 5 vol% (20 wt%) of impacting particles. This value of crystalline particles corresponds to that of chondrules and CAIs, which were transported from the inner region of the solar system to the outer comet‐forming region. Our results also suggest the presence of volatile components, such as organic material and perhaps ice, in some bulbous tracks (type‐C).  相似文献   
64.
Noble gases were measured both in bulk samples (stepped pyrolysis and total extraction) and in a HF/HCl residue (stepped pyrolysis and combustion) from the Klein Glacier (KLE) 98300 EH3 chondrite. Like the bulk meteorite and as seen in previous studies of bulk type 3 E chondrites (“sub-Q”), the acid residue contains elementally fractionated primordial noble gases. As we show here, isotopically these are like those in phase-Q of primitive meteorites, but elementally they are heavily fractionated relative to these. The observed noble gases are different from “normal” Q noble gases also with respect to release patterns, which are similar to those of Ar-rich noble gases in anhydrous carbonaceous chondrites and unequilibrated ordinary chondrites (with also similar isotopic compositions). While we cannot completely rule out a role for parent body processes such as thermal and shock metamorphism (including a later thermal event) in creating the fractionated elemental compositions, parent body processes in general seem not be able to account for the distinct release patterns from those of normal Q noble gases. The fractionated gases may have originated from ion implantation from a nebular plasma as has been suggested for other types of primordial noble gases, including Q, Ar-rich, and ureilite noble gases. With solar starting composition, the corresponding effective electron temperature is about 5000 K. This is lower than inferred for other primordial noble gases (10,000-6000 K). Thus, if ion implantation from a solar composition reservoir was a common process for the acquisition of primordial gas, electron temperatures in the early solar system must have varied spatially or temporally between 10,000 and 5000 K.Neon and xenon isotopic ratios of the residue suggest the presence of presolar silicon carbide and diamond in abundances lower than in the Qingzhen EH3 and Indarch EH4 chondrites. Parent body processes including thermal and shock metamorphism and a late thermal event also cannot be responsible for the low abundances of presolar grains. KLE 98300 may have started out with smaller amounts of presolar grains than Qingzhen and Indarch.  相似文献   
65.
In this study, the impact of the ocean–atmosphere coupling on the atmospheric mean state over the Indian Ocean and the Indian Summer Monsoon (ISM) is examined in the framework of the SINTEX-F2 coupled model through forced and coupled control simulations and several sensitivity coupled experiments. During boreal winter and spring, most of the Indian Ocean biases are common in forced and coupled simulations, suggesting that the errors originate from the atmospheric model, especially a dry islands bias in the Maritime Continent. During boreal summer, the air-sea coupling decreases the ISM rainfall over South India and the monsoon strength to realistic amplitude, but at the expense of important degradations of the rainfall and Sea Surface Temperature (SST) mean states in the Indian Ocean. Strong SST biases of opposite sign are observed over the western (WIO) and eastern (EIO) tropical Indian Ocean. Rainfall amounts over the ocean (land) are systematically higher (lower) in the northern hemisphere and the south equatorial Indian Ocean rainfall band is missing in the control coupled simulation. During boreal fall, positive dipole-like errors emerge in the mean state of the coupled model, with warm and wet (cold and dry) biases in the WIO (EIO), suggesting again a significant impact of the SST errors. The exact contributions and the distinct roles of these SST errors in the seasonal mean atmospheric state of the coupled model have been further assessed with two sensitivity coupled experiments, in which the SST biases are replaced by observed climatology either in the WIO (warm bias) or EIO (cold bias). The correction of the WIO warm bias leads to a global decrease of rainfall in the monsoon region, which confirms that the WIO is an important source of moisture for the ISM. On the other hand, the correction of the EIO cold bias leads to a global improvement of precipitation and circulation mean state during summer and fall. Nevertheless, all these improvements due to SST corrections seem drastically limited by the atmosphere intrinsic biases, including prominently the unimodal oceanic position of the ITCZ (Inter Tropical Convergence Zone) during summer and the enhanced westward wind stress along the equator during fall.  相似文献   
66.
Large-eddy simulations were conducted to investigate the mechanism of pollutant removal from a three-dimensional street canyon. Five block configurations with aspect ratios (building height to length) of 1, 2, 4, 8 and $\infty $ were used to create an urban-like array. A pollutant was released from a ground-level line source at the centre of the target canyon floor. For smaller aspect ratios, the relative contribution of the turbulent mass flux to net mass flux at the roof level, which was spatially averaged along the roof-level ventilation area, was closer to unity, indicating that turbulent motions mainly affected pollutant removal from the top of the canyon. As aspect ratio increased, the relative contribution became smaller, owing to strong upwind motions. However, the relative contribution again reached near unity for the infinite aspect ratio (i.e. a two-dimensional street canyon) because of lowered lateral flow convergence. At least 75 % of total emissions from the three-dimensional street canyon were attributable to turbulent motions. Pollutant removal by turbulent motions was related to the coherent structures of low-momentum fluid above the canyons. Though the coherent structure size of the low-momentum fluid differed, the positions of low-momentum fluid largely corresponded to instantaneous high concentrations of pollutant above the target canyon, irrespective of canyon geometry.  相似文献   
67.
The Chatree deposit is located in the Loei‐Phetchabun‐Nakhon Nayok volcanic belt that extends from Laos in the north through central and eastern Thailand into Cambodia. Gold‐bearing quartz veins at the Q prospect of the Chatree deposit are hosted within polymictic andesitic breccia and volcanic sedimentary breccia. The orebodies of the Chatree deposit consist of veins, veinlets and stockwork. Gold‐bearing quartz veins are composed mainly of quartz, calcite and illite with small amounts of adularia, chlorite and sulfide minerals. The gold‐bearing quartz veins were divided into five stages based on the cross‐cutting relationship and mineral assemblage. Intense gold mineralization occurred in Stages I and IV. The mineral assemblage of Stages I and IV is characterized by quartz–calcite–illite–laumontite–adularia–chlorite–sulfide minerals and electrum. Quartz textures of Stages I and IV are also characterized by microcrystalline and flamboyant textures, respectively. Coexistence of laumontite, illite and chlorite in the gold‐bearing quartz vein of Stage IV suggests that the gold‐bearing quartz veins were formed at approximately 200°C. The flamboyant and brecciated textures of the gold‐bearing quartz vein of Stage IV suggest that gold precipitated with silica minerals from a hydrothermal solution that was supersaturated by boiling. The δ18O values of quartz in Stages I to V range from +10.4 to +11.6‰ except for the δ18O value of quartz in Stage IV (+15.0‰). The increase in δ18O values of quartz at Stage IV is explained by boiling. PH2O is estimated to be 16 bars at 200°C. The fCO2 value is estimated to be 1 bar based on the presence of calcite in the mineral assemblage of Stage IV. The total pressure of the hydrothermal solution is approximately 20 bars at 200°C, suggesting that the gold‐bearing quartz veins of the Q prospect formed about 200 m below the paleosurface.  相似文献   
68.
69.
70.
Endo  Takahiro  Iizuka  Tomoki  Koga  Hitomi  Hamada  Nahoko 《Hydrogeology Journal》2023,31(5):1147-1163

Concern has grown regarding how public and private sectors should make effective use of local groundwater to alleviate negative impacts of water-supply cutoff following an earthquake event, which can be regarded as an emergency groundwater governance problem. Existing literature on groundwater governance, however, is based on the tacit assumption of groundwater utilization under normal social conditions, and scant consideration has been given to the role of groundwater following occurrence of a natural disaster. This study conducted questionnaire surveys to reveal how groundwater was used in three cities (Kumamoto, Sapporo, and Sendai) in Japan struck by large earthquakes between 2010 and 2020. Results revealed substantial differences between these cities in terms of groundwater utilization following earthquake occurrence. The time between the restoration of the electricity supply and restoration of the waterworks, and the social capital accumulated by local governments, are indicated as possible reasons for such differences. Analysis also identified policy challenges for improved groundwater governance in an emergency: (1) establishment of a strategy for emergency water supply through combined use of groundwater and other water sources, (2) enhancement of methods for timely inspection of groundwater quality following occurrence of a disaster, (3) maintenance of records of the number of registered disaster emergency wells (DEWs), (4) creation of methods for publicizing locational information on DEWs with adequate regard for the privacy of well owners, and (5) recognition of the importance of making DEWs part of overall disaster preparedness.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号